Part Number Hot Search : 
RB480 69218 1775554 X24C01GM HMC533 74HC147D X5165S8 MBT2222
Product Description
Full Text Search
 

To Download IRFS4610 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  5/22/08 benefits  improved gate, avalanche and dynamic dv/dt ruggedness  fully characterized capacitance and avalanche soa  enhanced body diode dv/dt and di/dt capability  www.irf.com 1 d 2 pak IRFS4610 to-220ab irfb4610 to-262 irfsl4610 irfb4610 IRFS4610 irfsl4610 hexfet   power mosfet applications  high efficiency synchronous rectification in smps  uninterruptible power supply  high speed power switching  hard switched and high frequency circuits s d g s d g s d g s d g v dss 100v r ds(on) typ. 11m  max. 14m  i d 73a absolute maximum ratings symbol parameter units i d @ t c = 25c continuous drain current, v gs @ 10v a i d @ t c = 100c continuous drain current, v gs @ 10v i dm pulsed drain current  p d @t c = 25c maximum power dissipation w linear derating factor w/c v gs gate-to-source voltage v dv/dt peak diode recovery  v/ns t j operating junction and c t stg storage temperature range soldering temperature, for 10 seconds (1.6mm from case) mounting torque, 6-32 or m3 screw avalanche characteristics e as (thermally limited) single pulse avalanche energy  mj i ar avalanche current  a e ar repetitive avalanche energy  mj thermal resistance symbol parameter typ. max. units r jc junction-to-case  ??? 0.77 r cs case-to-sink, flat greased surface , to-220 0.50 ??? c/w r ja junction-to-ambient, to-220  ??? 62 r ja junction-to-ambient (pcb mount) , d 2 pak  ??? 40 370 see fig. 14, 15, 16a, 16b, 190 7.6 -55 to + 175 20 1.3 10lb in (1.1n m) 300 max. 73 52 290

2 www.irf.com 
 repetitive rating; pulse width limited by max. junction temperature. limited by t jmax , starting t j = 25c, l = 0.39mh r g = 25 , i as = 44a, v gs =10v. part not recommended for use above this value. i sd 44a, di/dt 660a/ s, v dd v (br)dss , t j 175c. pulse width 400 s; duty cycle 2%. s d g  c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss .  c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss .  when mounted on 1" square pcb (fr-4 or g-10 material). for recom mended footprint and soldering techniques refer to application note #an-994.    
    
  static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units v (br)dss drain-to-source breakdown voltage 100 ??? ??? v v (br)dss / t j breakdown voltage temp. coefficient ??? 0.085 ??? v/c r ds(on) static drain-to-source on-resistance ??? 11 14 m v gs(th) gate threshold voltage 2.0 ??? 4.0 v i dss drain-to-source leakage current ??? ??? 20 a ??? ??? 250 i gss gate-to-source forward leakage ??? ??? 200 na gate-to-source reverse leakage ??? ??? -200 r g gate input resistance ??? 1.5 ??? f = 1mhz, open drain dynamic @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units gfs forward transconductance 73 ??? ??? s q g total gate charge ??? 90 140 nc q gs gate-to-source charge ??? 20 ??? q gd gate-to-drain ("miller") charge ??? 36 ??? t d(on) turn-on delay time ??? 18 ??? ns t r rise time ??? 87 ??? t d(off) turn-off delay time ??? 53 ??? t f fall time ??? 70 ??? c iss input capacitance ??? 3550 ??? pf c oss output capacitance ??? 260 ??? c rss reverse transfer capacitance ??? 150 ??? c oss eff. (er) effective output capacitance (energy related) ??? 330 ??? c oss eff. (tr) effective output capacitance (time related) ??? 380 ??? diode characteristics symbol parameter min. typ. max. units i s continuous source current ??? ??? 73 a (body diode) i sm pulsed source current ??? ??? 290 (body diode)   v sd diode forward voltage ??? ??? 1.3 v t rr reverse recovery time ??? 35 53 ns t j = 25c v r = 85v, ??? 42 63 t j = 125c i f = 44a q rr reverse recovery charge ??? 44 66 nc t j = 25c di/dt = 100a/ s  ??? 65 98 t j = 125c i rrm reverse recovery current ??? 2.1 ??? a t j = 25c t on forward turn-on time intrinsic turn-on time is negligible (turn-on is dominated by ls+ld) conditions v ds = 50v, i d = 44a i d = 44a v gs = 20v v gs = -20v mosfet symbol showing the v ds = 80v conditions v gs = 10v  v gs = 0v v ds = 50v ? = 1.0mhz v gs = 0v, v ds = 0v to 80v  , see fig.11 v gs = 0v, v ds = 0v to 80v  , see fig. 5 t j = 25c, i s = 44a, v gs = 0v  integral reverse p-n junction diode. conditions v gs = 0v, i d = 250 a reference to 25c, i d = 1ma  v gs = 10v, i d = 44a  v ds = v gs , i d = 100 a v ds = 100v, v gs = 0v v ds = 100v, v gs = 0v, t j = 125c i d = 44a r g = 5.6 v gs = 10v  v dd = 65v

www.irf.com 3 fig 1. typical output characteristics fig 3. typical transfer characteristics fig 4. normalized on-resistance vs. temperature fig 2. typical output characteristics fig 6. typical gate charge vs. gate-to-source voltage fig 5. typical capacitance vs. drain-to-source voltage 1 10 100 v ds , drain-to-source voltage (v) 0 1000 2000 3000 4000 5000 6000 c , c a p a c i t a n c e ( p f ) coss crss ciss v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd 0 20 40 60 80 100 120 140 q g total gate charge (nc) 0 4 8 12 16 20 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 80v vds= 50v vds= 20v i d = 44a -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 0.5 1.0 1.5 2.0 2.5 3.0 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 73a v gs = 10v 2.0 3.0 4.0 5.0 6.0 7.0 8.0 v gs , gate-to-source voltage (v) 0.1 1.0 10.0 100.0 1000.0 i d , d r a i n - t o - s o u r c e c u r r e n t ( ) v ds = 25v 60 s pulse width t j = 25c t j = 175c 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60 s pulse width tj = 25c 4.5v vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 60 s pulse width tj = 175c 4.5v vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v

4 www.irf.com fig 8. maximum safe operating area fig 10. drain-to-source breakdown voltage fig 7. typical source-drain diode forward voltage fig 11. typical c oss stored energy fig 9. maximum drain current vs. case temperature fig 12. maximum avalanche energy vs. draincurrent 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 v sd , source-to-drain voltage (v) 0.1 1.0 10.0 100.0 1000.0 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v 25 50 75 100 125 150 175 t j , junction temperature (c) 0 20 40 60 80 i d , d r a i n c u r r e n t ( a ) -60 -40 -20 0 20 40 60 80 100 120 140 160 180 t j , junction temperature (c) 100 105 110 115 120 125 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e 0 20 40 60 80 100 v ds, drain-to-source voltage (v) 0.0 0.5 1.0 1.5 2.0 e n e r g y ( j ) 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 400 800 1200 1600 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 4.6a 6.3a bottom 44a 1 10 100 1000 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100 sec dc

www.irf.com 5 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 t h e r m a l r e s p o n s e ( z t h j c ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc fig 13. maximum effective transient thermal impedance, junction-to-case fig 14. typical avalanche current vs.pulsewidth fig 15. maximum avalanche energy vs. temperature ri (c/w) i (sec) 0.4367 0.001016 0.3337 0.009383 j j 1 1 2 2 r 1 r 1 r 2 r 2 c ci i / ri ci= i / ri notes on repetitive avalanche curves , figures 14, 15: (for further info, see an-1005 at www.irf.com) 1. avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 16a, 16b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 14, 15). t av = average time in avalanche. d = duty cycle in avalanche = t av f z thjc (d, t av ) = transient thermal resistance, see figures 13) p d (ave) = 1/2 ( 1.3bvi av ) =   t/ z thjc i av = 2  t/ [1.3bvz th ] e as (ar) = p d (ave) t av 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 0.1 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) 0.05 duty cycle = single pulse 0.10 allowed avalanche current vs avalanche pulsewidth, tav assuming tj = 25c due to avalanche losses. note: in no case should tj be allowed to exceed tjmax 0.01 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1% duty cycle i d = 44a

6 www.irf.com  
     fig 16. threshold voltage vs. temperature  
    

      
    -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 2.0 3.0 4.0 5.0 v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 1.0a i d = 1.0ma i d = 250 a id = 100 a 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 4 8 12 16 i r r m - ( a ) i f = 44a v r = 85v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 4 8 12 16 i r r m - ( a ) i f = 29a v r = 85v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 100 200 300 q r r - ( n c ) i f = 44a v r = 85v t j = 125c t j = 25c 100 200 300 400 500 600 700 800 900 1000 di f / dt - (a / s) 0 100 200 300 q r r - ( n c ) i f = 29a v r = 85v t j = 125c t j = 25c

www.irf.com 7 fig 23a. switching time test circuit fig 23b. switching time waveforms v gs v ds 90% 10% t d(on) t d(off) t r t f v gs pulse width < 1 s duty factor < 0.1% v dd v ds l d d.u.t + - fig 22b. unclamped inductive waveforms fig 22a. unclamped inductive test circuit t p v (br)dss i as r g i as 0.01 t p d.u.t l v ds + - v dd driver a 15v 20v v gs fig 24a. gate charge test circuit fig 24b. gate charge waveform vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 21.    
   for n-channel hexfet   power mosfets 1k vcc dut 0 l  
     ? 
     ?     ?

        p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period !   
 ! + - + + + - - -     ?      !  ?   " #$## ?        %  && ? #$##'$


 

8 www.irf.com to-220ab packages are not recommended for surface mount application. 
     
     

 

 
  lot code 1789 example: t his is an irf 1010 note: "p" in assembly line position i ndi cates "l ead - f r ee" in the assembly line "c" as s embled on ww 19, 2000 int ernat ional part number rect ifier lot code assembly logo year 0 = 2000 dat e code week 19 line c  
         
    

www.irf.com 9 to-262 part marking information logo rectifier internat ional lot code assembly logo rect ifier int ernational dat e code week 19 year 7 = 1997 part number a = as s e mb l y s i t e code or product (opt ional) p = designates lead-free example: this is an irl3103l lot code 1789 assembly part number dat e code we e k 19 line c lot code year 7 = 1997 as s emb led on ww 19, 1997 in the assembly line "c" to-262 package outline (dimensions are shown in millimeters (inches))  
         
    

10 www.irf.com  

     f 530s this is an irf530s with lot code 8024 as s embled on ww 02, 2000 in the assembly line "l" assembly lot code int ernational rectifier logo part number dat e code year 0 = 2000 week 02 line l  

    (dimensions are shown in millimeters (inches)) dat e code in the assembly line "l" as s embled on ww 02, 2000 t his is an irf 530s wit h lot code 8024 international logo rectifier lot code part number f 530s for gb production

www.irf.com 11 data and specifications subject to change without notice. this product has been designed and qualified for the automotive [q101] market. qualification standards can be found on ir?s web site. ir world headquarters: 233 kansas st., el segundo, california 90245, usa tel: (310) 252-7105 tac fax: (310) 252-7903 visit us at www.irf.com for sales contact information . 5/08  
        3 4 4 trr feed direction 1.85 (.073) 1.65 (.065) 1.60 (.063) 1.50 (.059) 4.10 (.161) 3.90 (.153) trl feed direction 10.90 (.429) 10.70 (.421) 16.10 (.634) 15.90 (.626) 1.75 (.069) 1.25 (.049) 11.60 (.457) 11.40 (.449) 15.42 (.609) 15.22 (.601) 4.72 (.136) 4.52 (.178) 24.30 (.957) 23.90 (.941) 0.368 (.0145) 0.342 (.0135) 1.60 (.063) 1.50 (.059) 13.50 (.532) 12.80 (.504) 330.00 (14.173) max. 27.40 (1.079) 23.90 (.941) 60.00 (2.362) min. 30.40 (1.197) max. 26.40 (1.039) 24.40 (.961) notes : 1. comforms to eia-418. 2. controlling dimension: millimeter. 3. dimension measured @ hub. 4. includes flange distortion @ outer edge.


▲Up To Search▲   

 
Price & Availability of IRFS4610

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X